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Abstract. This report consists of a tdpvel aggregate analysis of the total potentialdonverting
livestockmanure into a domestic renewable fuel source (lsiotpeat could be used to help states |
renewable portfolio standard requirements and redyeenhouse gas (GHG) emissions. In the
livestock agriculture produces over one billiondai manure anrally on a renewable basis. Mos'
this manure is disposed of in lagoons or storedlas to decompose. Such disposal methods
methane and nitrous oxide, two important GHGs &ithand 310 times the global warming pote!
of carbon dioxide, respeaeely. In total, GHG emissions from the agricultussector in the U
amounted to 536 million metric tons (MMT) of carbdioxide equivalent, or 7% of the total
emissions in 2005. Of this agricultural contribaticcl to 118 MMT of carbon dioxide equigat
resulted from livestock manure emissions aloneh wiénds showing this contribution increasing f
1990 to 2005. Thus, limiting GHG emissions from mn@nrepresents a valuable starting poin
mitigating agricultural contributions to globalmiate change.

Anaerobic digestion, a process that converts manoarenethaneich biogas, can lower GH
emissions from manure significantly. Using biogasaubstitute for other fossil fuels, such as tmr.
electricity generation, replaces two GHG sources-uma and coal combustion—with a less car yon-
intensive source, namely biogas combustion.

The biogas energy potential was calculated usitgegafor the amount of biogas energy that ce
produced per animal unit (defined as 1000 poundmohal) perday and the number of animal ui
in the US. The 95 million animal units in the cayrtould produce nearly 1 quad of renewable er
per year, amounting to approximately 1% of the Otaltenergy consumption. Converting the bic
into electricity using standard microturbines copidduce 88 * 20illion kWh, or 2.4 + 0.6% ¢
annual electricity consumption in the US. Replacoaal and manure GHG emissions with
emissions from biogas would produce a net pote@idlG emissions reduction of 99 + B8llion
metric tons or 3.9 £ 2.3% of the annual GHG emissiibom electricity generation in the US.
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1. Introduction

In the United States livestock animals produce owee billion tons of manure annualfij|
Currently, most of this manure is collected in lag® or stored outdoors to decompose. Animal waste
stored in this fashion can emit unpleasant odasnful air pollutants and greenhouse gases. The air
pollutants emitted from manure include ammonia, \¥OBydrogen sulfide and particulate matter,
many of which can cause health problems in humZnsHesides polluting the air, ammonia
emissions from manure can contaminate ground watdrlead to eutrophication of the sd].|
Manure also emits methane and nitrous oxide, twiergogreenhouse gaseég.[Using standards
developed by the Intergovernmental Panel on Clin@Zttange (IPCC), methane has 21 times the
global warming potential of carbon dioxide andais oxide has 310 times the warming potential of
carbon dioxide over a 100 year timespan According to the Environmental Protection Agency
(EPA), in total, GHG emissions from the agricultisector in the US amounted to 536 million metric
tons (MMT) of carbon dioxide equivalent, or 7% dkettotal US emissions in 200§][ Of this
agricultural contribution at least 50.8 MMT of carbdioxide equivalent (and possibly much more)
resulted from methane and nitrous oxide emissioom flivestock manure aloné][ Moreover,
methane and nitrous oxide emissions from manur €lfoincreasing trend from 1990 to 2065 [
Because of the scale and growth in GHG emissi@m fmanure, finding other approaches to manure
management that decrease these emissions reprasaitable starting point for mitigating concerns
about global climate change in the agriculturatsec

Notably, through anaerobic digestion, which is dl-keown and time-tested process B], animal
manure can be converted to methane-rich biogassamtje, which is nearly odorles [9] and
useful as a fertilizerd[0]. Furthermore, the biogas is a valuable fuel ttaat be used in a variety of
applications such as cooking and home heatin@ntaiso be converted into compressed natural gas
(CNG) after a scrubbing process that removes cadimxide and hydrogen sulfidé], 12]. Biogas'
greatest potential for mitigating greenhouse gasssons, though, is as a substitute for coal in
electricity generation due to coal's role as thmary source of carbon dioxide emissiof8][from

the power sector.

Despite the multiple benefits of anaerobic digestas a waste management strategy, source of
renewable energy, and mitigant for greenhouse gassens, these combined benefits have never
been quantified at a national scale for the US. Witndies have been conducted focusing on energy
or the GHG mitigating potential of producing biogasvarious countries/] 14—1§ or in a specific
region [L9]. These studies consider varied biogas sources) fmunicipal to agricultural waste, and
different benefits of a biogas system. An article Rimentelet al quantified the possible energy
contribution of biogas by 2050 to be 0.5 quadsngemethodology was outlined to describe how this
conclusion was reached(]. To the author's knowledge no study has been wtied as to the
combined energy and GHG mitigation potential ofeanhically-digesting all of the animal manure
available in the United States. The research m nuscript seeks to fill that knowledge gap. This
paper will compare the changes in GHG emissionwd®t two scenarios regarding the treatment of
livestock manure.

(1) Scenario A constitutes business as usual; animalreas collected either in a lagoon or lef
the open and coal is burned to produce electri@tgenhouseasges are emitted both from i
decomposina animal manure and from the burnina a#l dor electricitv aeneration. (S



figure 1.)

(2) Scenario B includes the treatmieof livestock manure in anaerobic digesters, Wwinanvert the
waste to biogas. The resulting biogas is burnedeoerate electricity and offset cdakd
power. The carbon dioxide from the burning of theghs is the only GHG emission in tl
scenario. (See figur)
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Figure 2. Scenario B: biogas is produced and used forredgtgeneration, replacing tweources (
untreated manure) with one source of GHGs (biogasbeistion).

In this discussion, coal was chosen as the priffusatythat biogas would offset in order to determiine
greatest possible impact of biogas production a&d Because manure accumulation occurs at a rou
steady pace throughout the year, it is reasonabtertsider that the production of biogas could oacu
such a way for it to offset baseload productionmfreources such as coal. However, in practice bio
might be used to offset natural gas generatiorheraiverage fuel mix for power production in the LU
(which includes a combination of coal, nuclear,, gds) R1]. Speculating on how manure-based biog
will actually be implemented—if at all—is beyondetecope of this paper. Thus, for the purposesisf
analysis comparisons are restricted to coal-fimagy to establish a best-case scenario.



The following section will outline the calculatiofsr each scenario and the results of this analjose
that the objective of this analysis is to condudbplevel assessment of the potential for conngrti
manure into biogas as an approach for mitigatingsGhissions. For the sake of this analysis, poli
regulatory, technical, transportation or economipatiers of this approach will not be considered.

2. Analytical methodology

The approach that was used for this analysis begrnScenario B (see figui@ by considering the total
amount of animal units (defined as 1000 poundsvef &nimal weight) in the US and the amount
energy in the form of biogas they could produceairyear. Using standard efficiencies for biog
combustion, the potential GHG emissions and el@ttrigeneration was calculated from biogas produc
by livestock manure. For Scenario A, typical colanp efficiencies were used to determine the ene
consumed and GHG emissions from typical power plgmbducing the same amount of electricity
generated in Scenario B.

By comparing the emissions from Scenario A (thati®d and CH emitted from the manure and ¢€C
emitted from coal-fired electricity generation) aBdenario B (manure-originated emissions are adoi
and CQ is emitted from biogas-fired electricity generadiothe maximum potential GHG reductions ¢
Scenario A were calculated.

2.1. Scenario B

To determine the energy potential from the Unitédtes livestock population, energy in the form
biogas per animal unit was used. An animal uniteined as 1000 pounds of animal weight; the num|
of animal units in the country are listed in tablgl]. Chastainet al [22] reports the biogas energ
obtained per animal unit for fattened cattle, nutkws, swine and poultry calculated using Hill'sgaie
from manure equatior2f]. These values are also listed in tahle

Table 1. Annual energy available in the US from manuretesbby animal categoni]22].

Animal type Animal units Biogas energy per animal | Biogas energy/year
(millions) unit/day (thousand BTU) (trillion BTU)

Fattened Cattle 9.6 25.7 89.9

Milk cows 12.3 20.6 92.4

Other beef and 58.8 23.2 497

dairy cattle

Swine 8.5 39.8 124

Poultry 6.1 56.0 125

Total 928

The report by Chastain did not give an energy p@kemalue for the category of other beef and da
cattle, so an average of the energy from fattemgitecand milk cows was used to represent the ngss
category. The report also gave two energy potenfa the swine category; one for feeder to fini:
(operations that raise pigs from feeder swine #rthlaughter weight) and another for farrow to we
(operations where young piglets are born and ket thhey are weaned2fl]. Though the exact numbel
of animal units in each kind of operation was rairfd, reports cite that the number of finishing $o



imported from Canada is increasing, meaning thahymdS hog farms are shifting to finishing
operations25]. Another article reports that operations in tlwenbelt are now focusing on finishing
swine using locally grown grair2§]. Because the energy values are given per animglmeaning per
1000 pounds of animal weight, and because growmalsiare heavier and therefore contribute more
the total number of animal units than do smalleuynger animals, the authors considered the gre
weight of an older animal (i.e. feeder to finish)oe more relevant. Based on this logic, the astheed

the feeder to finish value as a suitable repretentaf the energy potential from swine manureha t
United States.

The number of animal units in the country and thergy possible per animal unit per day can
combined to find the total raw energy availableaotiaily and annual basis from manure-derived biog
(Epiogag in the United States, as shown in tahle

As noted in tabld, animal manure can yield up to 928 trillion BTU #w energy in a year, ol
approximately 1 quad (quadrillion BTU). For refezenin 2005, the total US energy consumption w
100 quadsZ7], thus livestock manure can potentially be a reasd@der source for approximately 1% c
total annual energy consumption in a flexible favhfuel (biogas) that can be burned onsite to pcedt
heat and electricity or transformed into CNG forrenwidespread use.

The energy from biogas can be converted to el@gtvath a typical efficiency of 34-40% for large
turbines and with an efficiency of 25% for smallgneratorsd8, 29|. For this analysis a range o
turbine efficiency from 25-40% was used. Equatihndan be used with the generation efficiency
determine the amount of electricity possible fromghs,esiogas FOr this analysis the range of efficiencie
used was 25-40%.

Ehiogas — Ehiu:]gus » 1. (1)

In equation {) Eniogas represents the unconverted raw energy in the bigypically listed in BTUS),
&iogasiS the total electricity that can be generatedhffmogas, and is the overall conversion efficiency
Including unit conversions, the total electricity kWh that can be produced from biogas can be fol
with the following equation.

kW
Chiogas KWh] = Epjoge [BTU] x 0.00293 [ET ]} X 1. (2)

Equation ) was evaluated for each animal type for the loared upper values of the efficiency rang
The results of this calculation are summarizecibig?2.

Table 2. Electricity possible from biogas for each anirtyale.

Electricity possible from biogas (billion kW)
Animal type Low () = 25%) High { = 40%)
Fattened cattle 6.6 10.5
Milk cows 6.8 10.8
Other beef and dairy cattl)e 36.4 58.2
Swine 9.1 14.5




Electricity possible from biogas (billion kWIh)
Animal type Low {} = 25%) High { = 40%)
Poultry 9.2 14.7
Total 68.0 108.8

The United States consumes 3.8 trillion kWh of gieity annually R7]. Thus the 68.0 billion kWh
possible from biogas at a low-end efficiency of 2%8presents 1.8% of the total annual electric
consumption. At the high-end conversion efficierafy 40%, the 108.8 billion kWh from manure
represents 2.9% of the total electricity consunmeithé country.

To complete the analysis of Scenario B, the GHGssimins from the burning of biogas also need to
considered. The method of Murpbyal [17] was followed to determine the emissions that wWaelult
from the combustion of biogas with a methane faactf 60—70% and carbon dioxide content of 309
40%, which is the typical composition of biogd$,[17, 30]. The emissions are determined using t
stoichiometric amount of carbon dioxide producedccbmplete combustion of the methane molefracti
of biogas plus the balance of €@ the biogas that is assumed, for this analysigass through the
combustion process unchanged. The emission factiien combined with the energy content of bioc
and the efficiency of its conversion to electriditydetermine the carbon dioxide released per latow
hour of electricity produced.

The combustible component of biogas is methaneatans () is the methane combustion reaction f
stoichiometric conditions.

CH, + 20, — CO, + 2H,0. (3)

This equation shows that the combustion of one rablaethane produces one mole of carbon dioxi
Changing this conversion to a mass basis usingaulaleweights shows that 16 g of methane prodt
44 g of CQ. In other words, 2.75 kg of GQs produced from the complete combustion of 1 kg
methane. At standard conditions, which nominallgvpil for this analysis, methane and carbon dioxi
have densities gfchs = 0.65 andbcor = 1.80 kg m°, respectively. The total amount of carbon dioxi
produced from the combustion of one cubic metdriofas is shown in equatiod)(below, wherexy,cna
is the per cent content of methane in the biogasdhyme with the balance gas comprised of carh
dioxide.

3 - y
kgCD: total — 1 nlhiughs(r‘.-‘i-CH-# = "DCH-* < 2.75
+ pco,(1 — xqcn,)).

Equation 4) shows that the total carbon dioxide emissionmftbe combustion of one meter cubed
biogas is the sum of the carbon dioxide conternihénbiogas and the amount of carbon dioxide regylt
from the combustion of methane.

Notably, stoichiometrically combusting one cubicteneof biogas yields 1.8 kg of G@fter combustion
no matter what portion is comprised of methane.nFrithese results it can be concluded th.
theoretically, the emissions of G@om the combustion of biogas are constant inespitchanges in its
composition. The energy content of the gas is tilg factor that varies with methane content. Tlsat
even though the CGemissions from biogas combustion are dependegitanthe volume of gas burned
the amount of useful energy that can be extractgenids on the methane mole fraction of the fuel.



The higher heating value of pure methane is 55.6&d#) which yields a volumetric energy density ¢
36 MJ m* at standard conditions. The energy dendfiycis, can be linearly scaled down to dilute
concentrations in biogas (for example, biogas 6886 methane content has about 20 M3, which
roughly agrees with the values reported by Murphwal [17]). The values of energy density and £C
emissions (if combusted) for a variety of methanelefnactions (from 50 to 100%) are plotted i
figure 3.
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Figure 3. Plot of the energy density of biogas and resulttagoon dio
from combustion versus the composition of the bsoga

These values can be converted to kilowatt houradiyg the conversion factor of 3.6 million joulesr
kilowatt hour. To determine the amount of electyichat can be generated from this energysdgran
efficiency factor ) of 25-40% was again used to determine that one cubicrmoétbiogas with 609
methane content produces 18Xh of electricity when converted at 25% efficieneghile a cubic mete
of biogas with 70% methane content that is condeaitel0% efficiency produces 2.81 kWh of electyicit

This energy content information can be combinedh wlite emissions results to find the carbon dio
produced per kilowatt hour of electricity generatethich is a function both of the methane moleifat
and the conversion efficiency. Equatid) (vas used to find the emissions factors. In tijisagion,Eq,cha
is the energy density of biogas as a function aharee molefraction and expressed in kWH af biogas.

1 "15;'10915 (xecm,Pen,2.75 + oo, (1 — xqcm,))

Eqcnyn

ico, = (3)

The resulting emissions factorg:¢,, in kg of CQ per kWh of electricity) are plotted in figude
showing that C@emissions per kilowatt hour are lowest for effitieombustion of biogas streams thi
have relatively higher methane content. Biogas aioimtg 60% methane and combusted at 2Ff
efficiency emit 1.13 kg COper kWh of electricity whereas 70% methane condaust 40% efficiency
emits 0.64 kg C@per kWh of electricity generated. By comparisomepmethane emits approximatel
0.52 kg of CQ per kWh of electricity under typical combustiomddions [B1], which agrees with the
values on the plot.
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Figure 4. Carbon dioxide emissions from biogas electrigigperation depending on the methane
molefraction and combustion efficiency.

These emission factors can now be used to detertménannual emissions from biogas:) when it is
used for power generation. Equati@y vas used for this conversion, which produced¢selts listed in
table3.

Yiotal = €biogasiCO;- {ﬁ}

Table 3. Total annual emissions of carbon dioxide frontkleity generation using biogas combustior
for the low- and high-efficiency cases with typioca¢thane molefractions of 60% and 70%.

CO, emissions from biogas-fired electricity generatfonillion
metric tons)
Animal type 60% methane, 25% efficiency 70% methd08&6 efficiency
Fattened cattle 7.4 6.8
Milk cows 7.7 6.9
Other beef and dairy |41.2 37.3
cattle
Swine 10.3 9.3
Poultry 10.4 9.4
Total 77.0 69.6

In total, the annual emissions from biogas combusin Scenario B vary from 69.6 to 76.8 millio
metric tons of C@ Table3 shows CQ emissions from each animal type and the total €oms from all
animals.



2.2. Scenario A

In Scenario A, the same amount of electricity isdoiced as in Scenario B, except that it is produc
from coal. To determine the amount of raw coal gn@eeded to produce the same amount of electri
as in Scenario B, the average efficiency of theveosion from coal to electricity of 3398%] was used
in equation 7).

Ehi 5
Er:q:ml = {]H;i“ . {? )

In this equatioreiegasis the electricity produced from biogas dfd. is the raw energy needed from co:
to produce the same amount of electricity. The ltesior the amount of coal energy needed
summarized in tablé below.

Table4. Coal energy needed to produce the same amounecirieity as possible from biogas fc
(60% methane content and 25% biogas conversioaiesftiy) and high case (for 70% methane c
biogas conversion efficiency).

Low case (60% methane, |High case (70% methane,
25% efficiency) 40% efficiency)

Electricity from biogas 68 108.8

(billion kwh)

Unburned coal energy neede@06.1 329.4

(billion kwh)

Unburned coal energy needed.70 1.1

(quad BTU)

According to the Energy Information Administratif88], the carbon dioxide emissions from coal a
0.32 and 0.33 kg of CKkWHh™ for bituminous and subbituminous coals, respektivBituminous and
subbituminous coals are the most commonly usedhenUnited State3f]. Thus, the total emissions
from coal electricity generation that would be effby 68 to 108.7 billion kWh of biogas electricdye
65.9 to 109.3 million metric tons (MMT) GO

Assessments by the EPA and EIA indicate that betws®8 and 117.9 (MMT) of carbon dioxid
equivalents were emitted annually in the form oftmee and nitrous oxide from undigested anin
manure in 2005 and 2006, 35, 36]. The authors acknowledge that there is a sigmticlifference in the
values reported by the EPA and EIA, but reconcitimgse differences is beyond the scope of thisrtep
Moreover, reports have noted that digested marefieoyver from the anaerobic digestion process) w
emit N,O if spread on the lan@7, 38]. Presumably that digestate would be used in pticether
nitrogen-based fertilizers. Since nitrogen-basetlifers emit NO and are tracked by the EPA and El
under a category other than livestock waste managgrthe authors consider, for the purposes of t
analysis, that the digestate's new emissions apeeafor-one replacement of the emissions for t
fertilizers that the digestate displaces.

2.3. Net emissions from Scenario A
Net emissions are calculated by subtracting thelalied coal and manure emissions from the n

biogas electricity production emissions. Or, to @ifig, by subtracting Scenario A emissions fror
Scenario B emissions as in equatigh (



VnetGHG = ¥B — Yalkgcosl. (8)

To obtain a range for the possible GHG mitigatithre maximum coal emissions (from subbitumino
coal) and maximum manure emissions were subtracted the minimum biogas emissions and tt
minimum possible coal emissions (bituminous coal) aninimum manure emissions were subtract
from the maximum biogas emissions. The calculas@ahown in equatiorsy.

YnetGHG = VYbiogas — Ymanure — _‘rﬁml[kgCDl]- (9)

In this equation the emissions from undigested m&nthanure and emissions from coal electricit
generationycoa, are subtracted from the emissions from biogas tsgroduce electricCityyiogas This
calculation gives a maximum net emissions valueld&7.5 billion kg and minimum net emissions valt
of —39.9 MMT of carbon dioxide. The negative neluesa indicate that the GHG emissions decreas
Scenario B is implemented at a comprehensive stakse net values represent the maximum poter
GHG emission offset that is possible by convertmgnure from a GHG source into a fuel used
displace coal. The total emissions from electriggneration in the US is reported as 2.5 trilli@ndt
carbon dioxide equivalents by the EIBg 39 meaning that the use of biogas to produce etatytri
could decrease the US carbon dioxide emissions fetentricity by 3.9 + 2.3%. The emission
calculated in this report are all summarized inifeg5 and6 in their respective scenarios.

CH, N,0 o
50.8-117.0MMT CO2eq.  09-9-109.3 MNIT CO2 eq.
_ &
Electricity |
Livestock manure 68.0-108.8 Billion kWh
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Figure 5. Scenario A, business as usual with calculategegaor emissions and electricity productior .
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Figure 6. Scenario B, comprehensive biogas production sedreity generation with calculated valu¢:s
for emissions and electricity production.
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3. Conclusion

The results in this paper quantify the potentialgnaerobic digestion of animal manure to both ekese
GHG emissions and provide a renewable energy soBscehanging the "business as usual scenario
electricity production and manure management (St to a scenario in which animal waste |
anaerobically digested and the resulting gas id use make electricity that displaces coal-fire
generation (Scenario B), the net GHG emissions feteutricity production can decrease by 3.9 £ 2.3
Scenario B also yields 2.4 £ 0.6% of the total leity consumed in the United States in one yéar.
light of the criticism that has been leveled agaithe report by the US Departments of Energy a
Agriculture that advocates the commitment of 1.[dnm tons of biomass to producing biofuels],
biogas production from manure has the less-contsmaiebenefit of reusing an existing waste souroe &
the potential to improve the environment. Nonetb&lehe logistics of widespread biogas productic
including feedstock and digestate transportationstnibe determined at the local level to produce :
most environmentally advantageous, economical, earedgy efficient system. Other issues such as
best methods to process and distribute biogas dladsd be analyzed before biogas production and
are implemented in widespread fashion. Thoughrdpert has demonstrated that converting manure
biogas could make substantial positive contribigitmwards reducing GHG emissions if widely use
future research might consider the policy, reguato economic barriers to widespread implementati
of such an approach.
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