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Abstract. This report consists of a top-level aggregate analysis of the total potential for converting 
livestock manure into a domestic renewable fuel source (biogas) that could be used to help states meet 
renewable portfolio standard requirements and reduce greenhouse gas (GHG) emissions. In the US, 
livestock agriculture produces over one billion tons of manure annually on a renewable basis. Most of 
this manure is disposed of in lagoons or stored outdoors to decompose. Such disposal methods emit 
methane and nitrous oxide, two important GHGs with 21 and 310 times the global warming potential 
of carbon dioxide, respectively. In total, GHG emissions from the agricultural sector in the US 
amounted to 536 million metric tons (MMT) of carbon dioxide equivalent, or 7% of the total US 
emissions in 2005. Of this agricultural contribution, 51 to 118 MMT of carbon dioxide equivalent 
resulted from livestock manure emissions alone, with trends showing this contribution increasing from 
1990 to 2005. Thus, limiting GHG emissions from manure represents a valuable starting point for 
mitigating agricultural contributions to global climate change.  

Anaerobic digestion, a process that converts manure to methane-rich biogas, can lower GHG 
emissions from manure significantly. Using biogas as a substitute for other fossil fuels, such as coal for 
electricity generation, replaces two GHG sources—manure and coal combustion—with a less carbon-
intensive source, namely biogas combustion.  

The biogas energy potential was calculated using values for the amount of biogas energy that can be 
produced per animal unit (defined as 1000 pounds of animal) per day and the number of animal units 
in the US. The 95 million animal units in the country could produce nearly 1 quad of renewable energy 
per year, amounting to approximately 1% of the US total energy consumption. Converting the biogas 
into electricity using standard microturbines could produce 88 ± 20 billion kWh, or 2.4 ± 0.6% of 
annual electricity consumption in the US. Replacing coal and manure GHG emissions with the 
emissions from biogas would produce a net potential GHG emissions reduction of 99 ± 59 million 
metric tons or 3.9 ± 2.3% of the annual GHG emissions from electricity generation in the US.  
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1. Introduction  

In the United States livestock animals produce over one billion tons of manure annually [1]. 
Currently, most of this manure is collected in lagoons or stored outdoors to decompose. Animal waste 
stored in this fashion can emit unpleasant odors, harmful air pollutants and greenhouse gases. The air 
pollutants emitted from manure include ammonia, VOCs, hydrogen sulfide and particulate matter, 
many of which can cause health problems in humans [2]. Besides polluting the air, ammonia 
emissions from manure can contaminate ground water and lead to eutrophication of the soil [3]. 
Manure also emits methane and nitrous oxide, two potent greenhouse gases [4]. Using standards 
developed by the Intergovernmental Panel on Climate Change (IPCC), methane has 21 times the 
global warming potential of carbon dioxide and nitrous oxide has 310 times the warming potential of 
carbon dioxide over a 100 year timespan [5]. According to the Environmental Protection Agency 
(EPA), in total, GHG emissions from the agricultural sector in the US amounted to 536 million metric 
tons (MMT) of carbon dioxide equivalent, or 7% of the total US emissions in 2005 [6]. Of this 
agricultural contribution at least 50.8 MMT of carbon dioxide equivalent (and possibly much more) 
resulted from methane and nitrous oxide emissions from livestock manure alone [6]. Moreover, 
methane and nitrous oxide emissions from manure show an increasing trend from 1990 to 2005 [6]. 
Because of the scale and growth in GHG emissions from manure, finding other approaches to manure 
management that decrease these emissions represents a valuable starting point for mitigating concerns 
about global climate change in the agricultural sector.  

Notably, through anaerobic digestion, which is a well-known and time-tested process [7, 8], animal 
manure can be converted to methane-rich biogas and sludge, which is nearly odorless [7, 9] and 
useful as a fertilizer [10]. Furthermore, the biogas is a valuable fuel that can be used in a variety of 
applications such as cooking and home heating. It can also be converted into compressed natural gas 
(CNG) after a scrubbing process that removes carbon dioxide and hydrogen sulfide [11, 12]. Biogas' 
greatest potential for mitigating greenhouse gas emissions, though, is as a substitute for coal in 
electricity generation due to coal's role as the primary source of carbon dioxide emissions [13] from 
the power sector.  

Despite the multiple benefits of anaerobic digestion as a waste management strategy, source of 
renewable energy, and mitigant for greenhouse gas emissions, these combined benefits have never 
been quantified at a national scale for the US. Many studies have been conducted focusing on energy 
or the GHG mitigating potential of producing biogas in various countries [7, 14–18] or in a specific 
region [19]. These studies consider varied biogas sources, from municipal to agricultural waste, and 
different benefits of a biogas system. An article by Pimentel et al quantified the possible energy 
contribution of biogas by 2050 to be 0.5 quads, yet no methodology was outlined to describe how this 
conclusion was reached [20]. To the author's knowledge no study has been conducted as to the 
combined energy and GHG mitigation potential of anaerobically-digesting all of the animal manure 
available in the United States. The research in this manuscript seeks to fill that knowledge gap. This 
paper will compare the changes in GHG emissions between two scenarios regarding the treatment of 
livestock manure.  

(1)   Scenario A constitutes business as usual; animal manure is collected either in a lagoon or left in 
the open and coal is burned to produce electricity. Greenhouse gases are emitted both from the 
decomposing animal manure and from the burning of coal for electricity generation. (See 



figure 1.)  

(2)   Scenario B includes the treatment of livestock manure in anaerobic digesters, which convert the 
waste to biogas. The resulting biogas is burned to generate electricity and offset coal-fired 
power. The carbon dioxide from the burning of the biogas is the only GHG emission in this 
scenario. (See figure 2.)  

 

Figure 1. Scenario A: business as usual. Livestock manure and coal-fired power emit greenhouse gases.

 

Figure 2. Scenario B: biogas is produced and used for electricity generation, replacing two sources of GHGs (coal
untreated manure) with one source of GHGs (biogas combustion). 

In this discussion, coal was chosen as the primary fuel that biogas would offset in order to determine the 
greatest possible impact of biogas production and use. Because manure accumulation occurs at a roughly 
steady pace throughout the year, it is reasonable to consider that the production of biogas could occur in 
such a way for it to offset baseload production from sources such as coal. However, in practice biogas 
might be used to offset natural gas generation or the average fuel mix for power production in the US 
(which includes a combination of coal, nuclear, gas, etc) [21]. Speculating on how manure-based biogas 
will actually be implemented—if at all—is beyond the scope of this paper. Thus, for the purposes of this 
analysis comparisons are restricted to coal-fired power to establish a best-case scenario.  



The following section will outline the calculations for each scenario and the results of this analysis. Note 
that the objective of this analysis is to conduct a top-level assessment of the potential for converting 
manure into biogas as an approach for mitigating GHG emissions. For the sake of this analysis, policy, 
regulatory, technical, transportation or economical barriers of this approach will not be considered. 

2. Analytical methodology  

The approach that was used for this analysis began with Scenario B (see figure 2) by considering the total 
amount of animal units (defined as 1000 pounds of live animal weight) in the US and the amount of 
energy in the form of biogas they could produce in a year. Using standard efficiencies for biogas 
combustion, the potential GHG emissions and electricity generation was calculated from biogas produced 
by livestock manure. For Scenario A, typical coal plant efficiencies were used to determine the energy 
consumed and GHG emissions from typical power plants producing the same amount of electricity as 
generated in Scenario B.  

By comparing the emissions from Scenario A (that is, N2O and CH4 emitted from the manure and CO2 
emitted from coal-fired electricity generation) and Scenario B (manure-originated emissions are avoided 
and CO2 is emitted from biogas-fired electricity generation), the maximum potential GHG reductions of 
Scenario A were calculated.  

2.1. Scenario B  

To determine the energy potential from the United States livestock population, energy in the form of 
biogas per animal unit was used. An animal unit is defined as 1000 pounds of animal weight; the number 
of animal units in the country are listed in table 1 [1]. Chastain et al [22] reports the biogas energy 
obtained per animal unit for fattened cattle, milk cows, swine and poultry calculated using Hill's biogas 
from manure equation [23]. These values are also listed in table 1. 

Table 1. Annual energy available in the US from manure, sorted by animal category [1, 22]. 

Animal type Animal units 
(millions) 

Biogas energy per animal 
unit/day (thousand BTU) 

Biogas energy/year 
(trillion BTU) 

Fattened Cattle 9.6 25.7 89.9 

Milk cows 12.3 20.6 92.4 

Other beef and 
dairy cattle 

58.8 23.2 497 

Swine 8.5 39.8 124 

Poultry 6.1 56.0 125 

Total   928 

The report by Chastain did not give an energy potential value for the category of other beef and dairy 
cattle, so an average of the energy from fattened cattle and milk cows was used to represent the missing 
category. The report also gave two energy potentials for the swine category; one for feeder to finish 
(operations that raise pigs from feeder swine to their slaughter weight) and another for farrow to wean 
(operations where young piglets are born and kept until they are weaned) [24]. Though the exact number 
of animal units in each kind of operation was not found, reports cite that the number of finishing hogs 



imported from Canada is increasing, meaning that many US hog farms are shifting to finishing 
operations [25]. Another article reports that operations in the cornbelt are now focusing on finishing 
swine using locally grown grain [26]. Because the energy values are given per animal unit, meaning per 
1000 pounds of animal weight, and because grown animals are heavier and therefore contribute more to 
the total number of animal units than do smaller, younger animals, the authors considered the greater 
weight of an older animal (i.e. feeder to finish) to be more relevant. Based on this logic, the authors used 
the feeder to finish value as a suitable representation of the energy potential from swine manure in the 
United States. 

The number of animal units in the country and the energy possible per animal unit per day can be 
combined to find the total raw energy available on a daily and annual basis from manure-derived biogas 
(Ebiogas) in the United States, as shown in table 1.  

As noted in table 1, animal manure can yield up to 928 trillion BTU of raw energy in a year, or 
approximately 1 quad (quadrillion BTU). For reference, in 2005, the total US energy consumption was 
100 quads [27], thus livestock manure can potentially be a renewable source for approximately 1% of 
total annual energy consumption in a flexible form of fuel (biogas) that can be burned onsite to produce 
heat and electricity or transformed into CNG for more widespread use.  

The energy from biogas can be converted to electricity with a typical efficiency of 34–40% for large 
turbines and with an efficiency of 25% for smaller generators [28, 29]. For this analysis a range of 
turbine efficiency from 25–40% was used. Equation (1) can be used with the generation efficiency to 
determine the amount of electricity possible from biogas, ebiogas. For this analysis the range of efficiencies 
used was 25–40%.  

 

In equation (1) Ebiogas represents the unconverted raw energy in the biogas (typically listed in BTUs), 
ebiogas is the total electricity that can be generated from biogas, and η is the overall conversion efficiency. 
Including unit conversions, the total electricity in kWh that can be produced from biogas can be found 
with the following equation.  

 

Equation (2) was evaluated for each animal type for the lower and upper values of the efficiency range. 
The results of this calculation are summarized in table 2. 

Table 2. Electricity possible from biogas for each animal type. 

   Electricity possible from biogas (billion kWh) 

Animal type Low (η = 25%) High (η = 40%) 

Fattened cattle 6.6 10.5 

Milk cows 6.8 10.8 

Other beef and dairy cattle 36.4 58.2 

Swine 9.1 14.5 



   Electricity possible from biogas (billion kWh) 

Animal type Low (η = 25%) High (η = 40%) 

Poultry 9.2 14.7 

Total 68.0 108.8 

The United States consumes 3.8 trillion kWh of electricity annually [27]. Thus the 68.0 billion kWh 
possible from biogas at a low-end efficiency of 25% represents 1.8% of the total annual electricity 
consumption. At the high-end conversion efficiency of 40%, the 108.8 billion kWh from manure 
represents 2.9% of the total electricity consumed in the country.  

To complete the analysis of Scenario B, the GHG emissions from the burning of biogas also need to be 
considered. The method of Murphy et al [17] was followed to determine the emissions that would result 
from the combustion of biogas with a methane fraction of 60–70% and carbon dioxide content of 30%–
40%, which is the typical composition of biogas [10, 17, 30]. The emissions are determined using the 
stoichiometric amount of carbon dioxide produced by complete combustion of the methane molefraction 
of biogas plus the balance of CO2 in the biogas that is assumed, for this analysis, to pass through the 
combustion process unchanged. The emission factor is then combined with the energy content of biogas 
and the efficiency of its conversion to electricity to determine the carbon dioxide released per kilowatt 
hour of electricity produced.  

The combustible component of biogas is methane. Equations (3) is the methane combustion reaction for 
stoichiometric conditions.  

 

This equation shows that the combustion of one mole of methane produces one mole of carbon dioxide. 
Changing this conversion to a mass basis using molecular weights shows that 16 g of methane produce 
44 g of CO2. In other words, 2.75 kg of CO2 is produced from the complete combustion of 1 kg of 
methane. At standard conditions, which nominally prevail for this analysis, methane and carbon dioxide 
have densities of ρCH4 = 0.65 and ρCO2 = 1.80 kg m–3, respectively. The total amount of carbon dioxide 
produced from the combustion of one cubic meter of biogas is shown in equation (4) below, where x%CH4 
is the per cent content of methane in the biogas by volume with the balance gas comprised of carbon 
dioxide.  

Equation (4) shows that the total carbon dioxide emissions from the combustion of one meter cubed of 
biogas is the sum of the carbon dioxide content in the biogas and the amount of carbon dioxide resulting 
from the combustion of methane.  

Notably, stoichiometrically combusting one cubic meter of biogas yields 1.8 kg of CO2 after combustion 
no matter what portion is comprised of methane. From these results it can be concluded that, 
theoretically, the emissions of CO2 from the combustion of biogas are constant in spite of changes in its 
composition. The energy content of the gas is the only factor that varies with methane content. That is, 
even though the CO2 emissions from biogas combustion are dependent only on the volume of gas burned, 
the amount of useful energy that can be extracted depends on the methane mole fraction of the fuel.  



The higher heating value of pure methane is 55.6 MJ kg–1, which yields a volumetric energy density of 
36 MJ m–3 at standard conditions. The energy density, E%CH4, can be linearly scaled down to diluted 
concentrations in biogas (for example, biogas with 55% methane content has about 20 MJ m–3, which 
roughly agrees with the values reported by Murphy et al [17]). The values of energy density and CO2 
emissions (if combusted) for a variety of methane molefractions (from 50 to 100%) are plotted in 
figure 3.  

 

Figure 3. Plot of the energy density of biogas and resulting carbon dioxide emissions 
from combustion versus the composition of the biogas. 

These values can be converted to kilowatt hours by using the conversion factor of 3.6 million joules per 
kilowatt hour. To determine the amount of electricity that can be generated from this energy density an 
efficiency factor (η) of 25–40% was again used to determine that one cubic meter of biogas with 60% 
methane content produces 1.51 kWh of electricity when converted at 25% efficiency, while a cubic meter 
of biogas with 70% methane content that is converted at 40% efficiency produces 2.81 kWh of electricity.  

This energy content information can be combined with the emissions results to find the carbon dioxide 
produced per kilowatt hour of electricity generated, which is a function both of the methane molefraction 
and the conversion efficiency. Equation (5) was used to find the emissions factors. In this equation, E%CH4 
is the energy density of biogas as a function of methane molefraction and expressed in kWh m–3 of biogas.  

 

The resulting emissions factors (zCO2, in kg of CO2 per kWh of electricity) are plotted in figure 4, 
showing that CO2 emissions per kilowatt hour are lowest for efficient combustion of biogas streams that 
have relatively higher methane content. Biogas containing 60% methane and combusted at 25% 
efficiency emit 1.13 kg CO2 per kWh of electricity whereas 70% methane combusted at 40% efficiency 
emits 0.64 kg CO2 per kWh of electricity generated. By comparison, pure methane emits approximately 
0.52 kg of CO2 per kWh of electricity under typical combustion conditions [31], which agrees with the 
values on the plot.  



 

Figure 4. Carbon dioxide emissions from biogas electricity generation depending on the methane 
molefraction and combustion efficiency. 

These emission factors can now be used to determine the annual emissions from biogas (ytotal) when it is 
used for power generation. Equation (6) was used for this conversion, which produced the results listed in 
table 3.  

 

Table 3. Total annual emissions of carbon dioxide from electricity generation using biogas combustion 
for the low- and high-efficiency cases with typical methane molefractions of 60% and 70%. 

   CO2 emissions from biogas-fired electricity generation (million 
metric tons) 

Animal type 60% methane, 25% efficiency 70% methane, 40% efficiency 

Fattened cattle 7.4 6.8 

Milk cows 7.7 6.9 

Other beef and dairy 
cattle 

41.2 37.3 

Swine 10.3 9.3 

Poultry 10.4 9.4 

Total 77.0 69.6 

In total, the annual emissions from biogas combustion in Scenario B vary from 69.6 to 76.8 million 
metric tons of CO2. Table 3 shows CO2 emissions from each animal type and the total emissions from all 
animals.  



2.2. Scenario A  

In Scenario A, the same amount of electricity is produced as in Scenario B, except that it is produced 
from coal. To determine the amount of raw coal energy needed to produce the same amount of electricity 
as in Scenario B, the average efficiency of the conversion from coal to electricity of 33% [32] was used 
in equation (7).  

 

In this equation ebiogas is the electricity produced from biogas and Ecoal is the raw energy needed from coal 
to produce the same amount of electricity. The results for the amount of coal energy needed are 
summarized in table 4 below. 

Table 4. Coal energy needed to produce the same amount of electricity as possible from biogas for the low case 
(60% methane content and 25% biogas conversion efficiency) and high case (for 70% methane content and 40% 
biogas conversion efficiency). 

   Low case (60% methane, 
25% efficiency) 

High case (70% methane, 
40% efficiency) 

Electricity from biogas 
(billion kWh) 

68 108.8 

Unburned coal energy needed 
(billion kWh) 

206.1 329.4 

Unburned coal energy needed 
(quad BTU) 

0.70 1.1 

According to the Energy Information Administration [33], the carbon dioxide emissions from coal are 
0.32 and 0.33 kg of CO2 kWh–1 for bituminous and subbituminous coals, respectively. Bituminous and 
subbituminous coals are the most commonly used in the United States [34]. Thus, the total emissions 
from coal electricity generation that would be offset by 68 to 108.7 billion kWh of biogas electricity are 
65.9 to 109.3 million metric tons (MMT) CO2.  

Assessments by the EPA and EIA indicate that between 50.8 and 117.9 (MMT) of carbon dioxide 
equivalents were emitted annually in the form of methane and nitrous oxide from undigested animal 
manure in 2005 and 2006 [6, 35, 36]. The authors acknowledge that there is a significant difference in the 
values reported by the EPA and EIA, but reconciling those differences is beyond the scope of this report. 
Moreover, reports have noted that digested manure (left over from the anaerobic digestion process) will 
emit N2O if spread on the land [37, 38]. Presumably that digestate would be used in place of other 
nitrogen-based fertilizers. Since nitrogen-based fertilizers emit N2O and are tracked by the EPA and EIA 
under a category other than livestock waste management, the authors consider, for the purposes of this 
analysis, that the digestate's new emissions are a one-for-one replacement of the emissions for the 
fertilizers that the digestate displaces.  

2.3. Net emissions from Scenario A  

Net emissions are calculated by subtracting the displaced coal and manure emissions from the new 
biogas electricity production emissions. Or, to simplify, by subtracting Scenario A emissions from 
Scenario B emissions as in equation (8).  



 

To obtain a range for the possible GHG mitigation, the maximum coal emissions (from subbituminous 
coal) and maximum manure emissions were subtracted from the minimum biogas emissions and the 
minimum possible coal emissions (bituminous coal) and minimum manure emissions were subtracted 
from the maximum biogas emissions. The calculation is shown in equation (9).  

 

In this equation the emissions from undigested manure, ymanure, and emissions from coal electricity 
generation, ycoal, are subtracted from the emissions from biogas used to produce electricity, ybiogas. This 
calculation gives a maximum net emissions value of –157.5 billion kg and minimum net emissions value 
of –39.9 MMT of carbon dioxide. The negative net values indicate that the GHG emissions decrease if 
Scenario B is implemented at a comprehensive scale. These net values represent the maximum potential 
GHG emission offset that is possible by converting manure from a GHG source into a fuel used to 
displace coal. The total emissions from electricity generation in the US is reported as 2.5 trillion kg of 
carbon dioxide equivalents by the EIA [36, 39] meaning that the use of biogas to produce electricity 
could decrease the US carbon dioxide emissions from electricity by 3.9  ±  2.3%. The emissions 
calculated in this report are all summarized in figures 5 and 6 in their respective scenarios.  

 

Figure 5. Scenario A, business as usual with calculated values for emissions and electricity production. 

 

Figure 6. Scenario B, comprehensive biogas production and electricity generation with calculated values 
for emissions and electricity production. 



3. Conclusion  

The results in this paper quantify the potential for anaerobic digestion of animal manure to both decrease 
GHG emissions and provide a renewable energy source. By changing the `business as usual scenario' of 
electricity production and manure management (Scenario A) to a scenario in which animal waste is 
anaerobically digested and the resulting gas is used to make electricity that displaces coal-fired 
generation (Scenario B), the net GHG emissions from electricity production can decrease by 3.9 ± 2.3%. 
Scenario B also yields 2.4 ± 0.6% of the total electricity consumed in the United States in one year. In 
light of the criticism that has been leveled against the report by the US Departments of Energy and 
Agriculture that advocates the commitment of 1.3 billion tons of biomass to producing biofuels [15], 
biogas production from manure has the less-controversial benefit of reusing an existing waste source and 
the potential to improve the environment. Nonetheless, the logistics of widespread biogas production, 
including feedstock and digestate transportation, must be determined at the local level to produce the 
most environmentally advantageous, economical, and energy efficient system. Other issues such as the 
best methods to process and distribute biogas should also be analyzed before biogas production and use 
are implemented in widespread fashion. Though this report has demonstrated that converting manure to 
biogas could make substantial positive contributions towards reducing GHG emissions if widely used, 
future research might consider the policy, regulatory or economic barriers to widespread implementation 
of such an approach. 
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